We proudly annouce to have deteted a regular progression of factors in numbers of any size (tested with numbers of up to 380 digits).
Our programme allows you to see how sums- of-potenciesMore-of-six themselves and their factors recurr regularly in the sequences.
Following this schema, they are calculabel, as their recurrence have the frequencies of Exponent+1.
More about this soon on ckc-cypher-gt.de
* CKC Chaos Rabbit Club *
# Python & Get_imports thanks to CS50
#Mathematics and programme by Ulrike Ritter
i = get_int(Positive Integer: )
j = get_int(faktor: )
c = 0
poly = 0
for c in range(i):
if poly < i:
pot = 6 ** c
poly = pot + poly
print(poly)
print(c)
z = poly % j
if (0 == z and poly > j):
print(Faktor!)
if poly >= i:
break;
Hier die Miri: Wir mussten das aufgrund von Ãœberlegungen zur Beschleunigung hier einstellen, bald mehr auf ckc... Ohmi muss nämlich jetzt noch schnell ein Lösungsbuch für Mathe 6. Klasse Gymmi besorgen, hihihi.(Gut, dass wir Hasiengel sie manchmal inspierieren :D )
und so geht's weiter...
i = get_int(Positive Integer: )
c = 0
poly = 0
polyrest=0
for c in range(i):
if (poly < i):
pot = 6 ** c
poly = pot + poly
print(c, poly)
if poly >= i:
#x=c-1
#while(c >= x >= 0):
file = open(faktoren.txt,r)
for line in file:
polynom = int(line.rstrip())
print(polynom, 1)
if(polynom<i):
polyrest = i - polynom
print(polyrest, rest)
while(polynom<polyrest):
polyrest = polyrest - polynom
print(polyrest, rest)
if(polynom>polyrest):
i=polyrest
continue
if(polynom==polyrest):
break
print(polyrest, =)# x=x-1
if ((polyrest <= 0) or polynom==1):
print(polyrest, rest)
break
für beliebige basen...